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Abstract. Theoretically supported techniques are given for clustering
the nodes of edge-weighted graphs via non-backtracking spectra when
the number of nodes is large and the skeleton graph is sparse. If the
graph comes from a sparse stochastic block model, the structural real
eigenvalues, out of the bulk of the spectrum, of the non-backtracking
matrix are aligned with those of the expected adjacency matrix if it is of
low rank. However, only the unweighted or weighted non-backtracking
matrix is at our disposal. We show how the corresponding eigenvectors
of the non-backtracking matrix and lower order companion matrices can
be used to find assortative clusters of the nodes even in the case, when
the expected adjacency matrix does not have a reduced rank, but it has
a low-rank approximation. The paper gives the theoretical background
and tools for sparse spectral clustering in very general frameworks. Ap-
plication to sparse quantum chemistry networks is also presented.

Keywords: Weighted non-backtracking matrix, Stochastic block
models, K-means clustering, Non-backtracking eigenvectors

1 Introduction

The purpose of this paper is to illustrate the usage of the non-backtracking ma-
trix for spectral clustering purposes in case of sparse graphs. Classical spectral
clustering uses some (k) structural (outstanding) eigenvalues of the unweighted
or weighted adjacency, Laplacian, or modularity matrices of the observed sim-
ple or edge-weighted graph together with eigenvectors; in case of dense graphs,
they mirror the structural eigenvalues and eigenvectors of the expectations of
these matrices, see [1–3]. Therefore, by the Weyl’s and Davis–Kahan type per-
turbation theorems for the structural eigenvalues and the corresponding eigen-
subspaces, the eigenvector-based representatives of the nodes are applicable for
metric clustering purposes. The idea behind these methods, though it is not
always emphasized, is that there is a dense stochastic block-model in the back-
ground, and the reduced rank of the expected adjacency matrix results in some
structural eigenvalues of the observed adjacency (or normalized Laplacian or
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modularity) matrix. This gives a hint for the number of clusters, and the corre-
sponding eigenvectors are used for the clustering itself; in [4] this is supported
with theorems.

However, in the sparse case, the structural eigenvalues of the expected adja-
cency matrix of a random graph, coming from a percolated k-cluster model, are
with high probability (w.h.p.) closer to the structural eigenvalues of the non-
backtracking matrix B than to those of the adjacency matrix A of a randomly
generated graph from this model, under some balancing conditions for the clus-
ter sizes and average degrees of the nodes. This seems to contradict to the laws
of large numbers, but in the sparse case (possessing nearly constant average
degrees) it is supported by computations, simulations, and also by theoretical
considerations, see, e.g., [5, 6]. Here behavior of deformed Wigner matrices and
Bauer–Fike type perturbation results are applicable, see, e.g., [6, 7]. More gener-
ally, e.g., for poly-log n order average degrees there are similar results in [8], in
the two-cluster case only, but the author says that it can be extended to the more
than two clusters situation too. However, here the reciprocals of the structural
real eigenvalues also appear in the bulk of the non-backtracking spectrum.

The structure of the non-backtracking spectrum for simple graphs is throughly
analyzed recently. For example, in [9] it is proved that two simple graphs are
isomorphic if and only if they have the same non-backtracking matrix. In [10] it
is proved that the non-backtracking eigenvalues of unit modulus (in the complex
plane) are, in fact, roots of the unity. The authors of [11] investigated when
the largest eigenvalue of the non-backtracking matrix is increased dramatically
under node removal, causing an abrupt decrease in the percolation threshold for
the critical probability of the transmission of an epidemic (they called it node
immunization).

In very general sparse stochastic block models (obtained by bond percola-
tion), we show how to find so-called assortative clusters of the nodes with spectral
techniques. We also apply the method to smaller parts of networks from quantum
chemistry, and with randomized methods elaborated for spectral decomposition
of sparse matrices (see, e.g., [12]), the technique can be extended to larger graphs
too. For the reduction of the molecular Hamiltonian matrix, the paper [13] uses
the modularity matrix, whereas we use the non-backtracking one.

Summarizing, the novelty of the paper is that it deals not only with the eigen-
values, but also with the eigenvectors, corresponding to the structural eigenvalues
of the non-backtracking matrix of an edge-weighted graph, so that to cluster the
nodes by means of the transformed smaller size vectors.

The organization of the paper is as follows. In Section 2, the notion and
properties of non-backtracking matrices are discussed for simple, edge-weighted,
and even more generally, for directed graphs. The size of this matrix is 2m,
where m is the number of edges in the skeleton graph. Albeit we have sparse
graphs, m is usually much larger than n (the number of nodes), but we use
smaller size, so-called companion matrices, the eigenvalues and eigenvectors of
which are closely related to those of the non-backtracking matrix. We show, how
to find these connections via inflation–deflation techniques. In Section 3, sparse
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(percolated) stochastic block models are discussed. A common feature of them
is that the expected adjacency matrix of the random graphs coming from these
models (after correcting the diagonal) is a low rank (k ≪ n) matrix with step-
vectors as eigenvectors. As the inflated versions of them are close to the leading
eigenvectors of the non-backtracking matrix, the k-means algorithm is applicable
to the node representatives obtained by the leading k eigenvectors. In Section 4,
these possibilities are discussed and supported by theoretical facts. In Section 5,
applications in quantum chemistry are presented, whereas Section 6 is devoted
to conclusions and further perspectives.

2 Preliminaries

2.1 Non-backtracking Matrix of an Edge-weighted, Undirected or
Directed Graph

First the non-backtracking matrix B of an edge-weighted, undirected graph G =
(V,W ) is introduced, where V is the set of nodes, |V | = n and W is the n× n
symmetric edge-weight matrix of nonnegative entries and zero diagonal. Since
a zero weight means no edge, the number m of edges is the number of the
positive upper-diagonal entries of W . In [6], the general entry of the 2m × 2m
non-backtracking matrix B of G is defined by

bef =Wfδe→fδf ̸=e−1 ,

where e = {i → j} and f = {s → l} are directed edges, e−1 = {j → i}
is the reverse of edge e and Wf = wsl = wls, so Wf = Wf−1 ; further, the
shorthand e → f with e = (e1, e2) and f = (f1, f2) means that e2 = f1, while δ
is the Kronecker-delta and also the indicator of the event in its lower index. So
equivalently,

bi→j, s→l = wslδjs(1− δil), (1)

and bi→j, s→l = wsl if and only if for the quadruple in the lower indices, i →
j = s → l holds, where l ̸= i; otherwise, it is 0. It may seem that the edges are
directed, but each edge is considered in both possible directions, and making
the edges bidirected just facilitates the definition of B (it is also related to
non-backtracking random walks, see [14] for details).

Another equivalent definition of B is via the unweighted non-backtracking
matrix N of the skeleton graph and the 2m× 2m diagonal matrix D containing
the positive edge-weights in its main diagonal. (Actually, the diagonal entries
of D are the lower- and upper-diagonal non-zero entries of W , and the first m
diagonal entries are the same as the second m ones.) The entries of N only indi-
cate the connection of the artificially bidirected edges, see [15], and are defined
with Equation (1), where the usual 0-1 adjacency matrix A plays the role of W .
With them,

B = ND and B∗ = DN∗, (2)

where ∗ denotes the adjoint of a matrix; in case of real matrices, akin to N or B,
this is the usual transposition, but complex matrices and vectors will also come
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into existence in the sequel. Historically (e.g., in [14]), it is the above B∗ that
is defined as the weighted non-backtracking matrix and N∗ as the unweighted
one. However, the eigenvalues of B and B∗ are the same, just the left and
right eigenvectors are interchanged, which does not make too much difference in
the subsequent discussion. Also, in [15], only the non-backtracking matrix of an
unweighted graph is discussed, and it is denoted by B. Here we use the notation
N for the non-backtracking matrix of the skeleton of G, and the notation B is
preserved for the edge-weighted case.

Actually, N is the adjacency matrix of the line-graph of the directed graph
with nodes which are the bidirected edges of the original graph. In this context,
the non-backtracking Laplacian is also defined in [9]. As a further perspective,
we want to generalize it to edge-weighted graphs, and define the normalized
non-backtracking modularity matrix too.

More generally, in [16], to any n × n matrix W of complex or real entries
(even if real, it is not necessary symmetric), the n2×n2 non-backtracking matrix
B of entries indexed by the pairs (i, j), (s, l), is introduced akin to in Eq. (1):

b(i,j),(s,l) = wslδjs(1− δil).

In particular, if W is the adjacency matrix of a simple graph, then the above
definition of B gives N , except of the zero rows/columns. If W is the symmetric
edge-weights matrix of zero diagonal, then the maximum size of B is n(n− 1)×
n(n− 1). In the aforementioned cases, both N and B have the so-called parity
time invariance (see [15, 16] and the forthcoming discussion). More generally,
if W is the non-symmetric adjacency matrix of a directed graph with possible
loops, then the maximum size ofB is n2×n2 and it has no parity time invariance.

However, our main concerns are sparse graphs, where the adjacency matrix
A (in the unweighted case) or the edge-weight matrix W (in the edge-weighted
case) have o(n) non-zero entries in each of their rows, and so, the size of B is
much smaller: it is 2m × 2m, where m is the number of existing edges (with
non-zero weights).

Now letG = (V,W ) be a directed edge-weighted graph, |V | = n andW is the
n×n, usually not symmetric edge-weight matrix of non-negative entries and zero
diagonal. Here wij for i ̸= j denotes the weight of the i→ j edge. Consequently,
for i < j, the i → j edge-weight (wij) appears above the main diagonal of W ,
whereas the j → i edge-weight (wji) appears below the main diagonal of it (it
can occur that one is zero, and the other is not). In the sparse case, we can also
reduce the size of B as follows. Let m and m′ denote the number of strictly
positive weights above and below the main diagonal of W , respectively. Also,
these positive weights are placed into the first m and m′ diagonal positions of
the (m +m′) × (m +m′) (positive definite) diagonal matrix D. Sometimes we
refer to these diagonal entries as We := wij > 0. The i < j entries appear in the
first m, whereas the i > j ones in the next m′ positions of the diagonal of D.
Then B = ND, where the non-backtracking matrix N is calculated from the
skeleton, and

b(i,j),(s,l) = wslajs(1− ail),
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where A = (aij) is the, usually not symmetric, 0-1 adjacency matrix of the
directed graph’s skeleton (aij = 1 if wij > 0 and 0, otherwise). The companion
matrices, to be introduced in Section 2.2, can be defined similarly in the directed
case, but here there are in- and out-degrees instead of the usual node-degrees.
However, directed graphs are not further treated in this paper.

In [9] it is proved that two simple graphs are isomorphic if and only if their
corresponding non-backtracking graphs are isomorphic (non-backtracking ma-
trices are the same if we consider the bidirected edges in the same succession).
Under non-backtracking graph we understand the graph on 2m nodes with ad-
jacency relation corresponding to the definition of the non-backtracking matrix
of the directed graph.

In [15], it is also discussed that if the skeleton of G is a connected graph that
is not a cycle and the minimum node degree is at least 2, then N , and so, B is
irreducible, see also [17]. Therefore, the Perron–Frobenius theory is applicable
to B, and under the above conditions, its largest absolute value eigenvalue is
a single positive real one, with corresponding eigenvector having positive real
coordinates. Since the characteristic polynomial of B has real coefficients, its
complex eigenvalues occur in conjugate pairs in the bulk of its spectrum.

Also, the following, so-called parity time invariance is true. Let V denote the
following involution on R2m (V = V −1, V 2 = I; further, V is orthogonal and
symmetric at the same time):

V =

(
O Im
Im O

)
.

Then in [15] we proved that N∗ = V NV and (NV )∗ = V N∗ = V V NV =
NV , so NV and V N are symmetric matrices. Consequently,

V B∗ = V DN∗ = DV N∗ = DNV = NDV = BV ,

and (V B∗)∗ = BV too. So, V B∗ and BV are symmetric matrices, they are
diagonalizable in an orthogonal basis, and so, their eigenvalues give the singular
values of B; however, they only depend on the node-degrees and have noting to
do with the eigenvalues of B (same as of B∗).

Since B∗ = V BV , it follows that if x is a right eigenvector of B, then
x̆ := V x is a a right eigenvector of B∗ with the same eigenvalue µ. Indeed,

B∗x̆ = V BV x̆ = V Bx = V (µx) = µx̆.

It is easy to see that x̆ ∈ R2m is the swapping of x ∈ R2m, i.e., the first and
second m coordinates are interchanged. This also implies that the left and right
eigenvectors of B are the swappings of each other.

Still, it easily follows by Eq. (2) that the rank of B is the same as that of N ;
further, the number of the structural real eigenvalues of B is inherited from N
that is calculated from the skeleton of G. In this way, the edge-weights, included
along the diagonal of D will not substantially change the number of clusters
under some uniform boundedness conditions for them, if the graph G comes
from a sparse stochastic block model to be introduced in Section 3.
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In [14], the relation between the eigenvalues of B∗ = DN∗ and the multi-
variate edge zeta function ζG(diagD) of the underlying edge-weighted graph G
is discussed, and it is proved that

ζ−1
G (diagD) = |I2m −DN∗|,

i.e., it is the product of the transformed eigenvalues 1− λi(B
∗) = 1− λi(B). In

the unweighted case (all We’s are equal to 1), the Ihara’s formula (see [15, 17])
further expands the above determinant with n×n matrices. A similar expansion
is proved in Theorem 2 of [14] in the weighted case with a Laplacian type operator
that will be revisited later, in Proposition 1.

Note that in case of an unweighted graph, the Ihara’s formula implies that
N has m−n eigenvalues equal to 1 and m−n eigenvalues equal to −1, whereas
its further eigenvalues are those of the 2n× 2n matrix

K =

(
O F − In
−In A

)
, (3)

where A is the adjacency matrix and the diagonal entries of the diagonal matrix
F are the usual node-degrees.

2.2 Eigenvectors and Companion Matrices

To ease the discussion, some notation and assumptions will be introduced. We
assume that the non-zero weights are uniformly bounded from above and from
below: there are constants C1 and C2 (independent of n) such that

C1 ≤ wij ≤ C2, for wij ̸= 0. (4)

Without hurting the generality, 0 < C1 ≤ C2 = 1 can be assumed. (For fixed
n, in a real-life edge-weighted graph we can tailor the weights, by making the
“small” weights equal to 0 so that to get a sparse graph). Further, we assume
that, with the possibly manipulated edge-weights, the node degrees

di = |{i : wij > 0, j = 1, . . . , n}| , i = 1, . . . , n (5)

are of order o(n) (usually of constant order), with increasing n. This is the case
in the k-cluster stochastic block models, where the weights are defined to be 1,
but edges come into existence with probability that is abruptly decreasing with
n.

Let DW denote the n× n diagonal matrix of diagonal entries

dWi =

n∑
j=1

wij , i = 1, . . . , n,

that are the so-called generalized degrees. In the unweighted case (0-1 weights),
dWi = di, and di’s are the usual node degrees; further, C1 = C2 = 1. In general,

C1di ≤ dWi ≤ C2di, i = 1, . . . , n. (6)
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Two auxiliary matrices, defined in [6], will also be used: the 2m× n end matrix
End has entries endei = 1 if i is the end-node of the (directed) edge e and
0, otherwise; the 2m × n start matrix Start has entries startei = 1 if i is the
start-node of the (directed) edge e and 0, otherwise. Then for any vector u ∈ Rn

and for any edge e = {i→ j} the following holds:

(Endu)e = uj and (Startu)e = ui.

Consequently,Endu is the 2m-dimensional inflated version of the n-dimensional
vector u, where the coordinate uj of u is repeated as many times, as many edges
(with positive weight) have end-node j; Startu is the 2m-dimensional inflated
version of the n-dimensional vector u, where the coordinate uj of u is repeated
as many times, as many edges (with positive weight) have start-node j; as each
edge is considered in both possible directions, this number is just dj . Trivially,

End∗ DEnd = Start∗ DStart = DW and Start∗ DEnd = W .

In [18], the following n-dimensional (column) vectors xout and xin are introduced
in the unweighted situation. Now they are extended to the edge-weighted case.

For any vector x ∈ R2m, the following n-dimensional vectors are defined:

xout := Start∗Dx and xin := End∗Dx. (7)

Coordinatewise, for i = 1, . . . , n,

xouti =
∑
j: j∼i

wijxi→j =
∑

e: e1=i

Wexe and xini =
∑
j: j∼i

wijxj→i =
∑

e: e2=i

Wexe.

In the general edge-weighted situation, unfortunately, we cannot trace back the
problem to the eigenvalue-eigenvector decomposition of a 2n × 2n matrix, akin
to the Ihara-formula in the unweighted case, see [15]. However, by a technique
similar to that of [6], if we know a real eigenvalue µ of B, we are able to find a
linear system of equations for the out-transform of the corresponding eigenvector
that is necessary for spectral clustering in Section 4. Then, with a Lapacian type
equation, µ can also be concluded.

We will use Proposition 1 of [6] for the leading real eigenvalues and corre-
sponding eigenvectors of B.

Proposition 1. Let x be a (right) eigenvector of B corresponding to a single
positive real eigenvalue µ such that µ ̸= wij, ∀i, j ∈ {1, . . . , n}. Let y := xout.
Then y satisfies the homogeneous system of linear equations

[In − Ã(µ) + D̃(µ)]y = 0, (8)

with a Laplacian type coefficient matrix, where the matrix Ã(µ) and the diagonal
matrix D̃(µ) have entries

Ã(µ)ij =
µwij

µ2 − w2
ij

and D̃(µ)ii =

n∑
j=1

w2
ij

µ2 − w2
ij

, (9)

with the understanding that wij = 0 whenever i ̸∼ j.
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This result is also supported by [14, 16, 19] and will be substantially used in
the next section. To be self-contained, we include a simplified proof.

Proof. If x is an eigenvector of B with corresponding eigenvalue µ, then

µxe =
∑

e→f, f ̸=e−1

Wfxf =
∑

f :f1=e2

Wfxf −We−1xe−1 = ye2 −Wexe−1 . (10)

Likewise,

µxe−1 =
∑

e−1→f, f ̸=e

Wfxf =
∑

f :f1=e1

Wfxf −Wexe = ye1 −Wexe.

From here,

µ2xe = µye2 − µWexe−1 = µye2 −Weye1 +W 2
e xe,

and so,

xe =
µye2 −Weye1
µ2 −W 2

e

that shows that y ̸= 0 as x ̸= 0. Substituting this formula for xe in Eq. (10), we
get that for any edge e = {j → i},

µ2yi − µwijyj
µ2 − w2

ij

=
∑

l:l∼i, l ̸=j

wli
µyl − wliyi
µ2 − w2

li

.

Further developing, we get that

µ2yi
µ2 − w2

ij

− µwijyj
µ2 − w2

ij

=
∑
l:l∼i

µwli

µ2 − w2
li

yl −
∑
l:l∼i

w2
li

µ2 − w2
li

yi − wji
µyj − wjiyi
µ2 − w2

ji

,

which provides

µ2yi
µ2 − w2

ij

−
w2

ijyi

µ2 − w2
ij

=
∑
l:l∼i

µwli

µ2 − w2
li

yl −
∑
l:l∼i

w2
li

µ2 − w2
li

yi.

This proves Eq. (8).

Eq. (8) is a system of homogeneous linear equations for the coordinates of y,
and to get a non-trivial solution, the determinant equation

|In − Ã(µ) + D̃(µ)| = 0 (11)

should hold. This is not a polynomial (characteristic) equation, but it is a ratio-
nal function of µ. Since, by the assumptions of Proposition 1, the denominators
are not zeros, we can multiply the determinant equations with them, and we
obtain an at most n2-degree polynomial of µ. The leading positive real solutions
µ1 ≥ · · · ≥ µk are considered that, by Proposition 1, should be the same as
the structural eigenvalues of B. Their number will be denoted by k. The corre-
sponding y1, . . . ,yk can be obtained by solving the system of homogeneous linear
Eq. (8), and so, providing the vectors xout

1 , . . . ,xout
k for clustering purposes in

Section 4.
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3 Sparse Stochastic Block Models

The general discussion of Stephan and Massoulié [6] is concentrated on models
where the expected adjacency matrix is of reduced rank, and so, B has some
outstanding real eigenvalues too. The authors introduce P = (pij) as a proba-
bility matrix containing the edge-probabilities, and W = (Wij) as the matrix of
random weights of edges. The number of nodes is increasing. At the instance,
when the this number is n, both P and W are symmetric real matrices of size
n × n. Their theory is applicable if Ā := P ◦ EW is a low rank matrix, where
◦ denotes the Hadamard (entry-wise) product of matrices, and the so obtained
graph is sparse enough. A constant average degree can be guaranteed if, in the
instance of n nodes, the pij ’s are proportional to 1

n . The authors of [6] only
require for the average degree to be of order o(log n). In the classical literature,
for the average degrees, the order o(n) is considered as sparse. Nowadays the
notion of intermediate density is introduced, e.g., for log n or poly-log n order
average degrees, which is the case in the subsequent quantum chemistry exam-
ples. For the general treatment of this situation, see also [8], where the bulk of
the spectrum of N and its eigenvalues inside and outside the bulk are completely
characterized.

However, the stochastic block models, discussed in [6, 15] and briefly intro-
duced below, are special cases, where the weights are constantly 1. Another
treatable case is when W has Gaussian entries, highly concentrated to their ex-
pectation and with variances decreasing with n. In this case the matrix P ◦EW
is the expected adjacency matrix, and P ◦W is close to it, where W contains
the observed weights.

We consider the practical situation when the entry Wij of the n× n random
weighted adjacency matrix W is w̃ij times a Bernoulli distributed random vari-
able with parameter pij , for 1 ≤ i < j ≤ n; these entries above the diagonal are
independent of each other, while those below the diagonal are identical to them.
So the parameters of this distribution are contained in the symmetric matrices

P and W̃ = (w̃ij) of real entries in (0,1]. In this way, the expected adjacency

matrix is Ā = P ◦ W̃ , with approximate matrix of variances P ◦ W̃ ◦ W̃ (if the
entries of P are of order 1

n ), and so, the theory of [6] is applicable to it. However,
for given (large) n, we only observe a realization W from the the distribution

W, in the non-zero positions of which the entries are equal to those of W̃ .
Proposition 2 below suggests that only B (calculated by the observed W ) is

at our disposal. If there is a remarkable spectral gap after its kth largest (real)
eigenvalue (or else, the number of positive real eigenvalues that are isolated
from the bulk is k) and the corresponding eigenvector based representatives well
cluster into k parts, this is an indication that the unknown expected adjacency
matrix has a good k-rank approximation, see Section 4. (In Section 6, it will be
forecasted that a block-matrix approximation is as well possible.) The point is
that even if the observed W is sparse, the expected weighted adjacency matrix
Ā is full, and usual matrix techniques of spectral clustering are applicable with
it theoretically. But in practice, we treat only B.
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We shall use the following general (informal) statement of [6]. The formal
statement uses many parameters, the definition of which is quite not trivial;
further, the proof of it needs several auxiliary theorems and propositions, so this
will be waived.

Proposition 2 (Based on Theorem 1 of [6]). Assume that the rank of the
matrix Ā = P ◦ EW is k = no(1), the graph is sparse enough, and the eigenvec-
tors, corresponding to the non-zero eigenvalues of the matrix Ā, are sufficiently
delocalized. Let k0 denote the number of eigenvalues of Ā whose absolute value
is larger than

√
ρ, where ρ is the spectral radius of the matrix P ◦ E(W ◦ W):

these are ν1 ≥ · · · ≥ νk0
with corresponding eigenvectors u1, . . . ,uk0

(they form
an orthonormal system as Ā is a real symmetric matrix). Then for i ≤ k0 ≤ k,
the ith largest eigenvalue µi of B is asymptotically (w.h.p. as n → ∞) equals
to νi and all the other eigenvalues of B are constrained to the circle (in the
complex plane) of center 0 and radius

√
ρ. Further, if i ≤ k0 is such that νi is

a sufficiently isolated eigenvalue of Ā, then the standardized eigenvector of B
corresponding to µi has inner product close to 1 with the standardized inflated
version of ui, namely, with Endui

∥Endui∥ .

Unfortunately, we do not know the matrix Ā and its leading eigenvalues; but
if our graph is from a certain block model, then we can conclude for those via
the non-backtracking spectrum. The observed adjacency or edge-weight matrix
do not help much in this issue, as the leading eigenvalues of those are farther
from their expectation as the corresponding quantities of the expectation are
from those of the non-backtracking matrix, see [6, 14, 20]. Now the statement
of Proposition 2 is applied to specific models, where the matrix Ā is not only
the diagonal-corrected expected adjacency matrix, but it is approximately the
variance matrix of the random adjacency matrix A too, in the k-block model.

In [5, 15, 20–22] the sparse SBMk model is considered with the following
parameters. The k × k probability matrix P has entries

pab = pba =
cab
n
, 1 ≤ a ≤ b ≤ k,

where the k × k symmetric affinity matrix C = (cab) stays constant as n→ ∞.
If a random graph Gn on node-set V = {1, . . . , n} comes from this model, then
an edge between i < j comes into existence, independently of the others, with
probability pab if i ∈ Va and j ∈ Vb, where (V1, . . . , Vk) is a partition of V into k
disjoint clusters. This will produce the upper-diagonal part of the n×n random
adjacency matrix A, and aji := aij . It can be extended to the i = j case when
self-loops are allowed, or else, the diagonal entries of the adjacency matrix are
zeros.

In this unweighted case the weights are 1’s, and Ā is the n × n inflated
matrix of the k × k matrix P : āij = pab if i ∈ Va and j ∈ Vb. When loops are
allowed, then E(aij) = āij for all 1 ≤ i, j ≤ n. In the loopless case, the expected
adjacency matrix EA differs from Ā with respect to the main diagonal, but the
diagonal entries are negligible, see [15] for details. In addition to C, another
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fixed model parameter is introduced that governs the growth of the clusters. Let
n1, . . . , nk be the cluster sizes (positive integers with

∑k
a=1 na = n). Then the

k × k diagonal matrix R := diag (r1, . . . , rk), where ra = na

n is the relative size

of cluster a (a = 1, . . . , k), is also a model parameter (
∑k

a=1 ra = 1). Usually,
ra’s are fixed, or else, the diagonal of R tends to a probability vector as n→ ∞.

The expected average degree of the random graph Gn ∈ SBMk is

c =
1

n

n∑
i=1

n∑
j=1

āij =
1

n

k∑
a=1

k∑
b=1

nanbpab =
1

n2

k∑
a=1

k∑
b=1

nanbcab =

k∑
a=1

raca, (12)

where ca =
∑k

b=1 rbcab is the average degree of cluster a. In [5], the case when
ca = c, for all a, is considered. (The authors say that this assumption is not
too restrictive, as otherwise the clusters could be distinguished by sorting the
node-degrees.) Also note that in the SBMk model, when ca = c (a = 1, . . . , k),
then in Proposition 2: ρ = c and k0 = k; also, B = N .

Sometimes cab = cin is the within-cluster (a = b) and cab = cout is the
between-cluster (a ̸= b) affinity. In [2], the network is called assortative if cin >
cout, and disassortative if cin < cout. Of course, remarkable difference is needed
between the two, if one wants to recognize the clusters.

If there are only cin and cout affinities and c1 = · · · = ck, then r1 = · · · =
rk = 1

k too. In this case, the model SBMk is called symmetric. Then

c =
cin + (k − 1)cout

k
,

and the separation of the clusters only depends on the cin, cout relation. The
detectability threshold (Kesten–Stigum threshold) in the symmetric case is

|cin − cout| > k
√
c, (13)

see [5, 20, 23].
Note that if our random graph comes from the SBMk model with k × k

parameter matrices R and C, then Ā has rank k0 ≤ k (so Proposition 2 is
applicable), and its nonzero eigenvalues are identical to the real eigenvalues of

the matrixRC (same as those ofR
1
2CR

1
2 ), and the eigenvectors of it are inflated

versions of those of R
1
2CR

1
2 , see [15]. Consequently, they are step-vectors on k

different steps and so, the k-means algorithm is applicable to the k0-dimensional
representatives of the nodes constructed with the k0 normalized eigenvectors of
N , corresponding to its leading eigenvalues µ1, . . . , µk0

, see Section 4. The point
is that we do not need the model parameters and the spectral decomposition of
Ā itself for the k-means clustering, see [15] for details.

Even if the condition c1 = · · · = ck = c does not hold, in [15] we applied the
method of belief propagation so that to conclude for the number of clusters; see
also [23, 24]. Assume that the number of clusters is k and a graph on n nodes
comes from the SBMk model. For a = 1, . . . , k, let ψa

j→i, denote the marginal (in
other words, state or membership) of node j if i were not there (more precisely, if
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we did not know whether or not there is an edge between i and j). If we assume
that our neighbors are correlated only through us, the overall state of the graph
can be modeled by having each node j send a message to its neighbors, and the
messages together must give the overall truth. The conditional probabilities

ψa
j→i := P(j is in cluster a when i is not present)

are computed through the neighbors of j that are different from i (in the real-
ization of the random graph coming from the SBMk model) as follows:

ψa
j→i = Cij

a ra
∏

l∼j, l ̸=i

k∑
b=1

ψb
l→j pab, a = 1, . . . , k, (14)

where Cij
a is a normalizing factor, see [15].

This message-passing equation is a system of 2mk non-linear equations with
the same number of unknowns. It can be solved by initializing messages ran-
domly, then repeatedly updating them via the fixed point iteration ε(t+1) =
Mε(t) (t = 1, 2, . . . ), where εaj→i = ψa

j→i − ra and the 2mk × 2mk matrix M
corresponds to the linear approximation of the system of which the zero vector
is a trivial fixed point (it gives the normalizing factors too). In [15] it is shown
that M is a Kronecker-product, M = N ⊗ T , where T = GRC is the trans-
mission matrix with G = diag ( 1

c1
, . . . , 1

ck
). We can find a fixed point other than

the trivial 0 when 0 is not a globally asymptotically stable solution. For this, a
sufficient condition is that the spectral radius of the matrix M is greater than
1.

Note that in [23] only the symmetric case is treated. In [5], the special case
c1 = · · · = ck = c is considered when the matrix T becomes T = 1

cRC; then
the leading eigenvalues of N and RC are w.h.p. “close” to each other. Also,
the largest eigenvalue of RC is c, which is trivially the case if k = 1 and we
have the Erdős–Rényi random graph [25]. The authors of [5] also allow “small”
fluctuations of the cluster membership proportions that causes the same order of
fluctuations in the average degrees of the clusters. Even in this case they prove
that the leading eigenvalues of N and RC are aligned (w.h.p.), and so, the
eigenvalues of their Kronecker product N ⊗RC should satisfy λ(N)λ(RC) >
c. Consequently, the eigenvalues of N greater than

√
c should be taken into

consideration.

4 Spectral Clustering of Sparse Edge-weighted,
Undirected Graphs

We will use that, by [6], if x is a unit-norm eigenvector of B, corresponding to
a structural real eigenvalue µ which is close to an eigenvalue ν of the expected
adjacency matrix with corresponding unit-norm eigenvector u ∈ Rn, then x is
also “close” to u (in the sense that their inner product is approaching 1 for
“large” n). It is valid if the expected adjacency matrix has low rank k (or at
least it has a good k-rank approximation), where k does not depend on n.
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If our graph is from the SBMk model, then (without knowing its parameters)
we know that u is a step-vector with k different coordinates, and in [15] we
estimate the objective function of the k-means algorithm with a term that tends
to 0 w.h.p. as n→ ∞.

More generally, under the conditions of Proposition 2, the relation〈
x,

Endu

∥Endu∥

〉
≥

√
1− ε ≥ 1− 1

2
ε

holds for any eigenvector xi corresponding to an eigenvalue µi of B which is
separated from the bulk, and the signal to noise ratio, maxµ1<µ2

i

µ1

µ2
i
, is “small”.

In this case, ε can be arbitrarily “small” with increasing n. Here we use the k
structural eigenvalues of the weighted non-backtracking matrix B. Furthermore,
if the matrix Ā has step-vectors as leading eigenvectors (as in the SBMk model),
then the k-means algorithm is applicable.

Consequently, ∥∥∥∥x− Endu

∥Endu∥

∥∥∥∥2 ≤ 2− 2(1− 1

2
ε) = ε,

which in view of Start∗Dx = xout and Start∗DEnd = W gives rise to the
inequality∥∥∥∥xout −W

u

∥Endu∥

∥∥∥∥2 =

∥∥∥∥Start∗D(
x− Endu

∥Endu∥

)∥∥∥∥2 ≤ ∥Start∗D∥2ε.

Therefore, W−1xout is close to the appropriately normalized u:∥∥∥∥W−1xout − u

∥Endu∥

∥∥∥∥2 ≤ ∥W−1Start∗D∥2ε.

Indeed, the largest eigenvalue of Start∗D2Start = (DW ◦W )2 is maxijw
2
ij , so

the largest singular value, i.e., the spectral norm of Start∗D is maxijwij ≤ C2.

The spectral norm of W−1 is at most 1
C1

. So ∥W−1Start∗D∥2 ≤ C2
2

C2
1
.

Now we apply this to the k leading normalized eigenvectors x1, . . . ,xk of B
and so, the following theorem is proved.

Theorem 1. Assume that the expected adjacency matrix of the underlying ran-
dom graph on n nodes and m edges has rank k with k single non-zero eigenval-
ues and corresponding unit-norm eigenvectors u1, . . . ,uk ∈ Rn. Assume that
the non-backtracking matrix B of the random graph has k structural eigen-
values (aligned with those of the expected adjacency matrix) with eigenvectors
x1, . . . ,xk ∈ R2m such that〈

xj ,
Enduj

∥Enduj∥

〉
≥

√
1− ε, j = 1, . . . , k. (15)
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Then for the transformed vectors W−1xout
j ∈ Rn, the relation

k∑
j=1

∥∥∥∥W−1xout
j − uj

∥Enduj∥

∥∥∥∥2 ≤ kε
C2

2

C2
1

. (16)

holds.

If our graph comes from the stochastic block model with k clusters (k is
the number of structural eigenvalues of B), then uj ’s are step-vectors with k
different coordinates on the same k steps and the objective function of the k-
means algorithm is less than or equal to the above sum of the squares. Without
knowing the uj ’s, we minimize the k-means objective with the k-dimensional
node representatives(

W−1xout
1 , . . .W−1xout

k

)
i
, i = 1, . . . , n.

Therefore, based on the spectral gap in B (k is the number of its structural
eigenvalues) and its k leading eigenvectors, if the representatives constructed
from them by the above formula “well” cluster into k parts, then without know-
ing P or W , we can cluster the nodes of the original edge-weighted graph. For
this, only the xout

1 , . . . ,xout
k vectors are used.

5 Application

As an example, we present a network from quantum chemistry, where the molec-
ular Hamiltonian matrix is considered in the so-called Slater determinant basis.
Slater determinants describe wave functions for a collection of electrons, each
with a wave function known as spin-orbital, see [13, 26–28].

In our small sample example we consider a graph on n = 133 nodes, obtained
from the water molecule. The connectivity between the Slater determinants are
the edge-weights of the graph, whereas the skeleton just detects these connec-
tivities.

In the subsequent illustrations n = 133 and m = 3032. In Fig. 1, the 22 real
eigenvalues of the the 2n×2n matrix K are plotted, which together with number
m − n of +1’s and m − n of −1’s constitute the real eigenvalues of the 2m ×
2m matrix N , the non-backtracking matrix corresponding to the unweighted
skeleton (the other eigenvalues are complex numbers). Note that the largest
eigenvalue of K is near to the average degree c = 45.594 and the smallest one
is a single 1 (indicating that the graph is connected, i.e., has one connected
component). Positive real eigenvalues indicate assortative clusters. The number
of the real eigenvalues larger than

√
c = 6.752 is 11, so the number of clusters

will be k = 11.
Fig. 2 plots the first fifty largest absolute value eigenvalues (they are real pos-

itive) of the weighted non-backtracking matrix B, obtained by the edge-weight
matrix W . (The weights are transformed into the [0,1] interval, and “small”
weights are made equal to zero.) A gap can be inspected after the fourth and
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Fig. 1. 22 real eigenvalues of
the 2n× 2n matrix K, n = 133
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Fig. 2. Leading 50 real eigenvalues
of the 2m× 2m matrix B, m = 3032

seventh eigenvalues in decreasing order. Therefore 7 and 4 clusters are obtained
by the k-means algorithm applied to the out-vectors corresponding to the leading
B-eigenvectors, see Fig. 3.
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(a) Number of clusters = 7. One cluster
is very “small”
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(b) Number of clusters = 4

Fig. 3. Number of clusters in the appropriate labeling of the nodes, obtained by the
k-means algorithm applied to the out-vectors corresponding to the leading

B-eigenvectors. The clusters are sketched by coloring the weights of the matrix W ,
where darker colors correspond to larger edge-weights.

Fig. 4 shows the 11 clusters in the appropriate labeling of the nodes, obtained by
the k-means algorithm applied to the in-vectors corresponding to the leading K-
eigenvectors. This clustering technique uses the unweighted skeleton graph only,
see [15]. However, the clusters themselves are sketched by coloring the weights
of the matrix W , where darker colors correspond to larger edge-weights.



16 Bolla et al.

1 50 100 133

1

50

100

133

1 50 100 133

1

50

100

133

Fig. 4. 11 clusters in the appropriate labeling of the nodes, obtained by the k-means
algorithm applied to the in-vectors corresponding to the leading K-eigenvectors

In high precision computations of larger molecules, one has extremely large ma-
trices, say, in multi-billion range. However, these matrices are sparse, each row
having at most poly-logarithmic number of non-zero elements. As a result, cor-
responding weighted networks are also sparse with most weights equal to zero.
Clustering of such networks could be a valuable tool in understanding molecular
structures and aiding computations which nowadays require huge computational
resources. Perhaps one could learn clusters from smaller scale samples of the net-
work and then just “blow-up” clusters as redundant structures and use them for
simplified large scale computations.

6 Conclusions and Further Directions

We considered the non-backtracking matrix based spectral clustering for sparse
graphs that usually come from a percolated stochastic block model. We intro-
duced estimates for the leading eigenvalues of the non-backtracking matrix and
companion matrices of it. We recommended the usage of the k-means algorithm
for the node representatives. Further, we used the corresponding eigenvectors
for spectral clustering. Our results are supported with real life data processing.

Proposition 2 postulates that Ā is a matrix of low rank. This is a strong
condition, but with the help of a theorem of [3], under some assumptions for
its structural eigenvalues and eigenvectors, we are able to give a construction
for a low rank approximation of Ā. Moreover, the approximating matrix has
a block structure, and therefore, it also has stepwise constant eigenvectors for
which clustering techniques of Section 4 are applicable.
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Assume that the matrix Ā = P ◦EW has k = no(1) structural eigenvalues that
are sufficiently delocalized and whose absolute value is larger than

√
ρ, where

ρ is the spectral radius of the matrix P ◦ E(W ◦ W): these are ν1 ≥ · · · ≥ νk
with corresponding orthonormal eigenvectors u1, . . . ,uk. Also assume that the
other eigenvalues are smaller than

√
ρ in absolute value; further, the sum of

the inner variances of the node representatives based on u1, . . . ,uk is O( 1ρ ).
This means that the squared distance between the eigensubspace spanned by
u1, . . . ,uk and the subspace F spanned by step-vectors (over the k-partition of
the nodes given by the k-means algorithm applied to the node representatives
(u1, . . . ,uk)i, i = 1, . . . , n) is O( 1ρ ), but usually, it is much smaller.

Then by the construction of Theorem 3.1.17 [3], there are (unit-norm) step-
vectors v1, . . . ,vk such that

Ā =

k∑
j=1

νjvjv
∗
j +E = M +E,

where M is a matrix of rank at most k and it has a block structure; further,
∥E∥ = O(

√
ρ). With them, the conditions of Proposition 2 still hold.

In classical spectral clustering, Laplacian, normalized Laplacian, and mod-
ularity matrices are also used in the degree-corrected cases. Analogously, the
authors of [9] recommend the usage of the non-backtracking Laplacian, which
is defined by the transition probabilities of the non-backtracking random walk.
As a future direction, we plan to extend it to the non-backtracking matrices of
edge-weighted graphs, and define non-backtracking modularity matrices too. We
also plan to consider directed graphs.
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